Loading...
Convergence Focus
本文介绍了晶振的等效模型、振荡原理以及5倍频率的来源。首先,晶振的等效模型包括并联电容C0、振荡电感Lm、振荡电容Cm和振荡电阻Rm。通过Python编程,可以模拟晶振的阻抗和频率响应。其次,晶振的振荡原理需要晶振处于电感区,与外部电容形成LC振荡,提供180°相移。最后,5倍频率的来源与晶振的负阻...
晶振名词解释晶振简单说明1公称频率及容许误差(NominalFrequencyandTolerance)在正确的振荡线路匹配下,从振荡线路输出的频率,称之为“公称频率(nominalfrequency)”。频率单位为MHz或KHz。实际的批量生产及振荡线路应用上,产品在室温环境(25°)中都会有一些相对于中心频率的频率散布误差。这类型的频率容许误差的最大散布值,一般是以ppm(partspe...
本文介绍了如何通过分析运算放大器的BODE图来建立其SPICE模型。首先,通过观察BODE图中的Aol拐点,可以确定运放的极点和零点。例如,29Hz处的Aol拐点对应第一个极点,而25MHz以上的相位变化90°处为第二个极点。接着,通过SPICE模型仿真,使用RC电路来模拟极点和零点,并利用压控电压...
本文介绍了运算放大器稳定性分析的方法,包括如何测量开环增益Aol和β。通过断开反馈回路并进行测试,可以得到Aolβ的值。在BODE图上,Aolβ曲线的0dB点和相位变化是判断系统稳定性的关键。文章还解释了在高频分析中使用电感和电容隔离的原理。
本文通过BODE图分析了运算放大器的稳定性条件。在负反馈电路中,稳定性的关键在于闭环增益和相位。当开环增益与反馈系数的乘积接近-1时,系统可能产生振荡。为确保稳定性,通常要求在相位达到±180°时,频率至少有45°的相位余量。文章还提供了BODE图的解读方法,帮助读者理解幅度和相位曲线的变化。
本文分析了运算放大器(运放)的稳定性,通过OPA364的开环增益曲线,探讨了运放的等效电路。文章详细讨论了运放的输入阻抗、输出阻抗以及闭环增益,并提供了相应的仿真结果。通过测量负载电压,验证了运放等效电路的准确性。最后,文章展示了在不同频率下的闭环增益,证实了仿真结果与实际测量数据的一致性。
运算放大器(Op-Amp)的噪声主要来源于电源、器件本身以及外部环境。电源噪声可以通过电源抑制比(PSRR)来分析,器件噪声包括输入失调电压(Vos)、输入偏置电流(IB+、IB-)等。辐射噪声通常由外部高频信号源引起,而应力噪声则由机械振动造成。在设计电路时,应考虑这些噪声源,并通过合理的布局和接...
本文以AD8603为例,详细解析了运算放大器的参数,包括输入特性(输入失调电压Vos、输入偏置电流Ib、输入失调电流Ios、输入电容/输入电阻Cin/Rin、输入电压范围Vin)、大信号电压增益Aov、共模抑制比CMRR、输出特性(输出电压Vout、短路电流Is、闭环输出阻抗Rout)、电源(电源抑...
共模电压上图为标准差分放大电路,差分输入,单端输出。啥也不说,公式搞起。可知,V1、V2端都加上了共模电压,如果共模电压很大,则无法实现电压跟随,Vin会被淹没在饱和电平中。V3和V4都会引入Vdc,同样会出现饱和问题。共模电压会影响输入信号得范围,需要保证共模电压不会导致运放输出饱和。
ECG信号提取——前置滤波电路由于ECG信号很微弱,处于mV级别,还有很多干扰信号,所以采集信号时需要进行滤波和放大处理,然后使用模数转换。为了滤波高频干扰和工频噪声,需要使用低通滤波器和陷波器抑制噪声,有时也要使用高通滤波器滤除低频噪声。信号滤除干净后有两种处理方式:放大后进行ADC处理使用高精度ADC采样前者将信号放大几百倍,满足ADC的输入范围,这种情况用于低分辨率的ADC,比如16b...